
3--13. General Solution. Initial value problems.
Find the general solution. If an initial condition is given, find also the corresponding 
particular solution and graph or sketch it. 

3. y ' -− y = 5.2

ClearAll["Global`*⋆"]

eqn = y'[x] -− y[x] ⩵ 5.2;
sol = DSolve[eqn, y, x]

y → Function{x}, -−5.2 + ⅇ1. x C[1]

Plot-−5.2` + ⅇ1.` x, {x, 0, 7}, ImageSize → 250
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4. y ' = 2 y -− 4 x
ClearAll["Global`*⋆"]

eqn = y'[x] ⩵ 2 y[x] -− 4 x;
sol = DSolve[eqn, y, x]

y → Function{x}, -−4 -−
1

4
-−
x

2
+ ⅇ2 x C[1]

Simplify[eqn /∕. sol]

{True}

5. y ' + ky = ⅇ-−kx

ClearAll["Global`*⋆"]

eqn = y'[x] + k y[x] ⩵ Exp[-−k x];
sol = DSolve[eqn, y, x]

y → Function{x}, ⅇ-−k x x + ⅇ-−k x C[1]

eqn /∕. sol /∕/∕ Simplify

{True}



Plotⅇ-−k x x + ⅇ-−k x /∕. k → 1 , {x, 0, 7}, ImageSize → 250
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6. y ' + 2 y = 4 cos 2 x, y 1
4 π = 3

ClearAll["Global`*⋆"]

eqn = y'[x] + 2 y[x] ⩵ 4 Cos[2 x];

sol = DSolveeqn, y
π

4
 ⩵ 3, y, x

y → Function{x}, ⅇ-−2 x 2 ⅇπ/∕2 + ⅇ2 x Cos[2 x] + ⅇ2 x Sin[2 x]

eqn /∕. sol

{True}

y
π

4
 /∕. sol[[1]]

3

7. xy' = 2 y + x3 ⅇx

ClearAll["Global`*⋆"]

eqn = x y'[x] ⩵ 2 y[x] + x3 ⅇx;
sol = DSolve[eqn, y, x]

y → Function{x}, ⅇx x2 + x2 C[1]

eqn /∕. sol /∕/∕ Simplify

{True}

Plotⅇx x2 + x2 , {x, 0, 7}, ImageSize → 250
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8. y ' + y tan x = ⅇ-−0.01 x cos x, y(0) = 0
ClearAll["Global`*⋆"]

eqn = y'[x] + y[x] Tan[x] ⩵ ⅇ-−0.01 x Cos[x];
sol = DSolve[{eqn, y[0] ⩵ 0}, y, x]

y → Function{x},
1

ⅇ-−ⅈ x + ⅇⅈ x
2.

100. + 1.07119 × 10-−16 ⅈ

ⅇ(-−0.01-−2. ⅈ) x (1. + 0. ⅈ) ⅇ(0.01+2. ⅈ) x ⅇ-−ⅈ x + ⅇⅈ x
2. Cos[x]1. -−

1. -− 2.73653 × 10-−18 ⅈ 1. + ⅇ2 ⅈ x
2. Cos[x]1.

Hypergeometric2F10. + 0.005 ⅈ, 2., 1. + 0.005 ⅈ, -−1. ⅇ(0.+2. ⅈ) x -−

(0.0000499988 + 0.00999975 ⅈ) ⅇ(0.+2. ⅈ) x 1. + ⅇ2 ⅈ x
2. Cos[x]1.

Hypergeometric2F11. + 0.005 ⅈ, 2., 2. + 0.005 ⅈ, -−1. ⅇ(0.+2. ⅈ) x -−

6.24996 × 10-−6 + 0.00249998 ⅈ ⅇ(0.+4. ⅈ) x 1. + ⅇ2 ⅈ x
2. Cos[x]1.

Hypergeometric2F12., 2. + 0.005 ⅈ, 3. + 0.005 ⅈ, -−1. ⅇ(0.+2. ⅈ) x
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FullSimplify[eqn /∕. sol]


1

Cos[x]3.
ⅇ(-−0.01-−6. ⅈ) x

1. ⅇ(0.+6. ⅈ) x Cos[x]4. + 1. + ⅇ2 ⅈ x
1. Cos[x]2. 5.55112 × 10-−17 + 100. ⅈ

ⅇ(0.+6. ⅈ) x Hypergeometric2F10. + 0.005 ⅈ, 2., 1. + 0.005 ⅈ,

-−1. ⅇ(0.+2. ⅈ) x -− (0.999975 -− 0.00499988 ⅈ) ⅇ(0.+8. ⅈ) x

Hypergeometric2F11. + 0.005 ⅈ, 2., 2. + 0.005 ⅈ, -−1. ⅇ(0.+2. ⅈ) x -−

(0.249998 -− 0.000624996 ⅈ) ⅇ(0.+10. ⅈ) x

Hypergeometric2F12., 2. + 0.005 ⅈ, 3. + 0.005 ⅈ, -−1. ⅇ(0.+2. ⅈ) x +

1.38778 × 10-−17 + 25. ⅈ 1. + ⅇ2 ⅈ x
2.

1. ⅇ(0.+3. ⅈ) x -− 1. ⅇ(0.+5. ⅈ) x

Cos[x]1. -− (2. -− 0.01 ⅈ) ⅇ(0.+4. ⅈ) x Cos[x]2.

Hypergeometric2F10. + 0.005 ⅈ, 2., 1. + 0.005 ⅈ, -−1. ⅇ(0.+2. ⅈ) x +

(0.0000499988 + 0.00999975 ⅈ) 1. ⅇ(0.+5. ⅈ) x -− 1. ⅇ(0.+7. ⅈ) x

Cos[x]1. -− 0.0000999975 -− 4.99988 × 10-−7 ⅈ ⅇ(0.+6. ⅈ) x Cos[x]2.

Hypergeometric2F11. + 0.005 ⅈ, 2., 2. + 0.005 ⅈ, -−1. ⅇ(0.+2. ⅈ) x +

6.24996 × 10-−6 + 0.00249998 ⅈ ⅇ(0.+7. ⅈ) x -−

6.24996 × 10-−6 + 0.00249998 ⅈ ⅇ(0.+9. ⅈ) x

Cos[x]1. Hypergeometric2F12., 2. + 0.005 ⅈ,

3. + 0.005 ⅈ, -−1. ⅇ(0.+2. ⅈ) x + Cos[x]2.

(-−0.0000999975 -− 0.0199995 ⅈ) ⅇ(0.+6. ⅈ) x Hypergeometric2F1

1. + 0.005 ⅈ, 3., 2. + 0.005 ⅈ, -−1. ⅇ(0.+2. ⅈ) x +

ⅇ(0.+8. ⅈ) x (-−0.0000124999 + 0.00500003 ⅈ) Hypergeometric2F1

2., 2. + 0.005 ⅈ, 3. + 0.005 ⅈ, -−1. ⅇ(0.+2. ⅈ) x -−

(0.0000499997 + 0.0199999 ⅈ) Hypergeometric2F1

2. + 0.005 ⅈ, 3., 3. + 0.005 ⅈ, -−1. ⅇ(0.+2. ⅈ) x -−

(0.0000111111 + 0.00666665 ⅈ) ⅇ(0.+10. ⅈ) x Hypergeometric2F1

3., 3. + 0.005 ⅈ, 4. + 0.005 ⅈ, -−1. ⅇ(0.+2. ⅈ) x ⩵ 0

testsam = y[0] /∕. sol[[1]]

-−3.99529 × 10-−15 + 1.73472 × 10-−16 ⅈ

Chop[testsam]

0

The Chop is necessary at the edge of machine precision, I guess because there is virtual fluff 
floating around there of the complex variety.

9. y ' + y sin x = ⅇcos x, y(0) = -−2.5

ClearAll["Global`*⋆"]
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eqn = y'[x] + y[x] Sin[x] ⩵ ⅇCos[x];
sol = DSolve[{eqn, y[0] ⩵ -−2.5}, y, x]

y → Function{x}, -−0.919699 ⅇCos[x] + ⅇCos[x] x

The particular solution is checked.
eqn /∕. sol /∕/∕ Simplify

{True}

y[0] /∕. sol[[1]]

-−2.5

PossibleZeroQ-−0.9196986029286058` ⅇCos[x] + ⅇCos[x] x -− x -−
2.5

ⅇ
ⅇCos[x]

True

The expression in the green cell above is equivalent to the answer in the text, as shown by 
the PZQ. The second term in the PZQ gives the form of the text answer.
solg = DSolve[{eqn}, y, x]

y → Function{x}, ⅇCos[x] x + ⅇCos[x] C[1]
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Plot-−0.9196986029286058` ⅇCos[x] + ⅇCos[x] x , ⅇCos[x] x + ⅇCos[x],

{x, 0, 7}, ImageSize → 150, AspectRatio → Automatic, GridLines → All

10. y ' cos x + (3 y -− 1) sec x = 0, y π4  = 4
3

ClearAll["Global`*⋆"]

eqn = y'[x] Cos[x] + (3 y[x] -− 1) Sec[x] ⩵ 0;

sol = DSolveeqn, y
π

4
 ⩵

4

3
, y, x

y → Function{x},
1

3
ⅇ-−3 Tan[x] 3 ⅇ3 + ⅇ3 Tan[x]

eqn /∕. sol /∕/∕ Simplify

{True}

y
π

4
 /∕. sol[[1]]

4

3

11. y ' = (y -− 2) cot x
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11. y ' = (y -− 2) cot x

ClearAll["Global`*⋆"]

eqn = y'[x] ⩵ (y[x] -− 2) Cot[x];
sol = DSolve[eqn, y, x]

{{y → Function[{x}, 2 + C[1] Sin[x]]}}

eqn /∕. sol

{True}

Plot[2 + Sin[x], {x, -−2, 5}, ImageSize → 350,
AspectRatio → Automatic, GridLines → All]

ClearAll["Global`*⋆"]

12. xy' + 4 y = 8 x4, y(1) = 2
eqn = x y'[x] + 4 y[x] ⩵ 8 x4;
sol = DSolve[{eqn, y[1] ⩵ 2}, y, x]

y → Function{x},
1 + x8

x4


eqn /∕. sol /∕/∕ Simplify

{True}

y[1] /∕. sol[[1]]

2

13. y ' = 6 (y -− 2.5) tanh 1.5 x

ClearAll["Global`*⋆"]

eqn = y'[x] ⩵ 6 (y[x] -− 2.5) Tanh[1.5 x];
sol = DSolve[eqn, y, x]

y → Function{x}, 2.5 + C[1] Cosh[1.5 x]4.

eqn /∕. sol /∕/∕ Simplify

{True}
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Plot2.5` + Cosh[1.5` x]4.`, {x, -−1, 1},

ImageSize → 350, AspectRatio → 0.2, GridLines → Automatic

15 - 20 General properties of linear ODEs
These properties are of practical and theoretical importance because they enable us to 
obtain new solutions from given ones. Thus in modeling, whenever possible, we prefer 
linear ODEs over nonlinear ones, which have no similar properties.
  Show that nonhomogeneous linear ODEs shown by numbered line (1), p.27,  and homo-
geneous linear ODEs, described by numbered line (2), p. 28, have the following proper-
ties. Illustrate each property by a calculation for two or three equations of your choice. 
Give proofs.

15. The sum y1 + y2 of two solutions y1 and y2 of the homogeneous equation (2) is a 
solution of (2), and so is a scalar multiple a y1 for any constant a. The properties are not 
true for (1)!

17. The sum of a solution of (1) and a solution of (2) is a solution of (1).

19. If y1 is a solution of (1), what can you say about c y1?

21. Variation of parameter. Another method of obtaining numbered line (4), p. 28, 
results from the following idea. Write numbered line (3), p. 28, as c y*, where y* is the 
exponential function, which is a solution of the homogeneous linear ODE y*’ +p y* = 0. 
Replace the arbitrary constant c in (3) with a function u to be determined so that the 
resulting function y = u y* is a solution of the nonhomogeneous linear ODE y’ +p y = r.

22--28. Nonlinear ODEs. Using a method of this section or separating variables, find the 
general solution. If an initial condition is given, find also the particular solution and 
sketch or graph it.

22. y' + y = y2, y(0) = -−
1

3

ClearAll["Global`*⋆"]

8     1.5 Linear ODEs. Bernoulli Equation. Population Dynamics 27.nb



eqn = y'[x] + y[x] ⩵ y[x]2;

sol = DSolveeqn, y[0] ⩵ -−
1

3
, y, x

Solve::ifun:
Inversefunctionsare beingusedby Solve, so somesolutionsmaynotbe found; use Reduceforcompletesolutioninformation. *

y → Function{x}, -−
1

-−1 + 4 ⅇx


eqn /∕. sol /∕/∕ Simplify

{True}

y[0] /∕. sol[[1]]

-−
1

3

23. y ' + xy = xy-−1, y(0) = 3

ClearAll["Global`*⋆"]

eqn = y'[x] + x y[x] ⩵
x

y[x]
;

sol = DSolve[{eqn, y[0] ⩵ 3}, y, x]
Solve::ifun:

Inversefunctionsare beingusedby Solve, so somesolutionsmaynotbe found; use Reduceforcompletesolutioninformation. *

Solve::ifun:
Inversefunctionsare beingusedby Solve, so somesolutionsmaynotbe found; use Reduceforcompletesolutioninformation. *

DSolve::bvnul: For somebranchesof thegeneralsolution, thegivenboundaryconditionsleadto an emptysolution. *

Solve::ifun:
Inversefunctionsare beingusedby Solve, so somesolutionsmaynotbe found; use Reduceforcompletesolutioninformation. *

General::stop: Furtheroutputof Solve::ifun willbe suppressedduringthiscalculation. *

y → Function{x}, ⅇ-−x2 8 + ⅇx2 

eqn /∕. sol /∕/∕ Simplify

{True}

y[0] /∕. sol[[1]]

3

solg = DSolve[{eqn}, y, x]

y → Function{x}, -− 1 + ⅇ-−x2+2 C[1] , y → Function{x}, 1 + ⅇ-−x2+2 C[1] 

The specific function is the teal-colored one.
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Plot-− 1 + ⅇ-−x2 , ⅇ-−x2 8 + ⅇx2 ,

{x, -−1, 1}, ImageSize → 100, AspectRatio → Automatic
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3

24. y ' + y = -− x
y

ClearAll["Global`*⋆"]

eqn = y'[x] + y[x] ⩵
-−x

y[x]
;

sol = DSolve[eqn, y, x]

y → Function{x}, -−
1 -− 2 x + 2 ⅇ-−2 x C[1]

2
,

y → Function{x},
1 -− 2 x + 2 ⅇ-−2 x C[1]

2


eqn /∕. sol[[1]] /∕/∕ Simplify

True

eqn /∕. sol[[2]] /∕/∕ Simplify

True

25. y ' = 3.2 y -− 10 y2

In[15]:= ClearAll["Global`*⋆"]

In[16]:= eqn = y'[x] ⩵ 3.2 y[x] -− 10 y[x]2;
sol = DSolve[eqn, y, x]

Out[17]= y → Function{x},
8. × 2.718283.2 x

25. × 2.718283.2 x + 2.718288. C[1]
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In[19]:= eqn /∕. sol

Out[19]= {True}

In[20]:= PossibleZeroQ
8.` × 2.718281828459045`3.2` x

25.` × 2.718281828459045`3.2` x + 2.718281828459045`8.` C[1]
-−

8.` ⅇ3.2` x

25.` *⋆ ⅇ3.2` x + ⅇ8.` C[1]


Out[20]= True

The above PZQ allows me to write

In[21]:= y[x] =
8 ⅇ3.2 x

25 ⅇ3.2 x + ⅇ8 C

Out[21]=
8 ⅇ3.2 x

ⅇ8 C + 25 ⅇ3.2 x

and the plots

In[30]:= Plot
8 ⅇ3.2` x

ⅇ8 + 25 ⅇ3.2` x
,

1

ⅇ-−3.2 x + 10 /∕ 3.2
,

{x, -−1, 1}, ImageSize → 250, AspectRatio → 0.7,
PlotStyle → Thickness[0.003], PlotLegends → "Expressions"

Out[30]=
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1
ⅇ-−3.2 x+ 10

3.2

Though the Mathematica solution does check, it is evidently quite a bit different than that 
of the text.

26. y ' = (tan y)
(x -− 1) , y(0) = 1

2 π

ClearAll["Global`*⋆"]
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eqn = y'[x] ⩵
Tan[y[x]]

(x -− 1)
;

sol = DSolveeqn, y[0] ⩵
π

2
, y, x

Solve::ifun:
Inversefunctionsare beingusedby Solve, so somesolutionsmaynotbe found; use Reduceforcompletesolutioninformation. *

Solve::ifun:
Inversefunctionsare beingusedby Solve, so somesolutionsmaynotbe found; use Reduceforcompletesolutioninformation. *

{{y → Function[{x}, ArcSin[1 -− x]]}}

eqn /∕. sol /∕/∕ Simplify

{True}

27. y ' = 1
(6 ⅇy -− 2 x)

ClearAll["Global`*⋆"]

eqn = y'[x] ⩵
1

6 ⅇy[x] -− 2 x
;

sol = DSolve[eqn, y, x]
Solve::ifun:

Inversefunctionsare beingusedby Solve, so somesolutionsmaynotbe found; use Reduceforcompletesolutioninformation. *

y → Function{x}, Log
1

6
x +

x2

x3 -− 54 C[1] + 6 3 -−x3 C[1] + 27 C[1]2
1/∕3

+

x3 -− 54 C[1] + 6 3 -−x3 C[1] + 27 C[1]2
1/∕3

,

y → Function{x}, Log
x

6
-−

1 + ⅈ 3  x2

12 x3 -− 54 C[1] + 6 3 -−x3 C[1] + 27 C[1]2
1/∕3

-−

1

12
1 -− ⅈ 3  x3 -− 54 C[1] + 6 3 -−x3 C[1] + 27 C[1]2

1/∕3
,

y → Function{x}, Log
x

6
-−

1 -− ⅈ 3  x2

12 x3 -− 54 C[1] + 6 3 -−x3 C[1] + 27 C[1]2
1/∕3

-−

1

12
1 + ⅈ 3  x3 -− 54 C[1] + 6 3 -−x3 C[1] + 27 C[1]2

1/∕3
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These odd-looking solutions seem able to check out when tested.
eqn /∕. sol[[1]] /∕/∕ Simplify

True

eqn /∕. sol[[2]] /∕/∕ Simplify

True

eqn /∕. sol[[3]] /∕/∕ Simplify

True

The following evaluation of sol[[1]] shows that the imaginary axis is an important compo-
nent of this solution function.

NLog
1

6
x +

x2

x3 -− 54 + 6 3 -−x3 + 27 
1/∕3

+

x3 -− 54 + 6 3 -−x3 + 27
1/∕3

 /∕. x → 1

-−0.136765 -− 0.845369 ⅈ

So if I want to plot the function, I have to make room for the imaginary part. I assume that 
sol[[2]] and sol[[3]] also do a significant part of their business in the imaginary realm, but 
I’ll just stick with sol[[1]] for now.
d2 = DiscretizeRegion@ImplicitRegion[-−5 ≤ x < 5  -−5 < y < 5, {x, y}];
ParametricPlotReImLog

1

6
x +

x2

x3 -− 54 + 6 3 -−x3 + 27 
1/∕3

+ x3 -− 54 + 6 3 -−x3 + 27
1/∕3

,

{x, y} ∈ d2, PlotRange → {{-−2, 2}, {-−2, 1}}, Frame → True,
ImageSize → 200, AspectRatio → Automatic

The above is an odd enough plot that I can’t judge its correctness.

28. 2 xyy' + (x -− 1) y2 = x2 ⅇx, Set y2 = z
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ClearAll["Global`*⋆"]

eqn = 2 x y[x] y'[x] + (x -− 1) y[x]2 ⩵ x2 ⅇx;
sol = DSolve[eqn, y, x]

y → Function{x}, -−
ⅇ-−x/∕2 x ⅇ2 x + 2 C[1]

2
,

y → Function{x},
ⅇ-−x/∕2 x ⅇ2 x + 2 C[1]

2


eqn /∕. sol[[1]] /∕/∕ Simplify

True

eqn /∕. sol[[2]] /∕/∕ Simplify

True

31 - 40 Modeling. Further applications

31. Newton’s law of cooling. If the temperature of a cake is 300℉ when it leaves the oven 
and is 200℉ ten minutes later, when will it be practically equal to the room temperature 
of 60℉, say when will it be 61℉?

From online sources such as http://vlab.amrita.edu/?sub=1&brch=194&sim=354&cnt=1 I can put 
it down as
200 ⩵ 60 + (240) ⅇ-−k t

and
140 == (240) ⅇ-−k t

Solve140 ⩵ (240) ⅇ-−10 k, k

k → ConditionalExpression
1

10
2 ⅈ π C[1] + Log

12

7
 , C[1] ∈ Integers

Discarding the imaginary part I retain

N-−
1

10
Log

12

7


-−0.0538997

as the value of k, in agreement with the text answer. (The minus sign was always part of k, 
the 10 factor merely occupying the space in between. Or, I could say that k will always be 
negative for things cooling down.)

When I re-insert k to calculate a specific case, the sign flips
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Solve239 == ⅇ0.0538997 t, t

Solve::ifun:
Inversefunctionsare beingusedby Solve, so somesolutionsmaynotbe found; use Reduceforcompletesolutioninformation. *

{{t → 101.605}}

The text answer is given as 102 minutes, thus agreement to 3S.

33. Drug injection. Find and solve the model for drug injection into the bloodstream if, 
beginning at t = 0, a constant amount A g/min is injected and the drug is simultaneously 
removed at a rate proportional to the amount of the drug present at time t.

This looks like example 3 on p. 30, except that the input volume is constant instead of being 
based on a sinusoidal curve.
ClearAll["Global`*⋆"]

y[t] is the amount of drug in the system at a given time t. The k y[t] is the proportional 
removal of the drug, aa the amount injected.
eqn = y'[t] -− aa + k y[t] ⩵ 0

-−aa + k y[t] + y′[t] ⩵ 0

sol = DSolve[{eqn, y[0] ⩵ 0}, y, t]

y → Function{t},
aa ⅇ-−k t -−1 + ⅇk t

k


eqn /∕. sol /∕/∕ Simplify

{True}

A specific amount of drug is injected, and continues to enter at a constant rate. The removal 
is proportional to the concentration, and the concentration gradually equilibrates.

In[39]:= Plot
aa ⅇ-−k t -−1 + ⅇk t

k
/∕. {aa → 1, k → 1}, {t, 0, 10},

ImageSize → 250, AspectRatio → 0.7, PlotStyle → Thickness[0.003]

Out[39]=

2 4 6 8 10

0.6

0.7

0.8

0.9

1.0

35. Lake Erie. Lake Erie has a water volume of about 450 km3 and a flow rate (in and 
out) of about 175 km2 per year. If at some instant the lake has pollution concentration p 
= 0.04%, how long, approximately, will it take to decrease it to p/2, assuming that the 
inflow is much cleaner, say, it has pollution concentration p/4, and the mixture is uni-
form (an assumption that is only imperfectly true)? First guess.
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35. Lake Erie. Lake Erie has a water volume of about 450 km3 and a flow rate (in and 
out) of about 175 km2 per year. If at some instant the lake has pollution concentration p 
= 0.04%, how long, approximately, will it take to decrease it to p/2, assuming that the 
inflow is much cleaner, say, it has pollution concentration p/4, and the mixture is uni-
form (an assumption that is only imperfectly true)? First guess.

This problem looks like a variation of the brine mixing problem described in example 5 on 
p. 14. y[t] will equal the amount of pollution product in the lake at any given time t. y '[t] = 
pollution inflow rate - pollution outflow rate. The pollution inflow rate is 0.0001*175 km2 . 
The pollution outflow rate is not simply 0.0004*175 km2 , because the assumption of mix-
ing affects it. Since y[t] equals the amount of pollution product in the lake at any given 
time, 175

450 y[t] will describe the quantity which exits during a year. So the way to write the 
change in quantity of the item of interest, pollution, would be
ClearAll["Global`*⋆"]

eqn = y'[t] == 175. 0.0001 -−
1

450.
y[t]

y′[t] ⩵ 175. (0.0001 -− 0.00222222 y[t])

And the setup for calculating the governing equation, including the initial value, would be
sol = DSolve[{eqn, y[0] ⩵ 0.0004 *⋆ 450.}, y, t]

y → Function{t}, 0.045 ⅇ-−0.388889 t 3. + 1. ⅇ0.388889 t

For some reason it is necessary to chop off a bit to check the solution.

Chopeqn /∕. sol /∕/∕ Simplify, 10-−16

{True}

Having got the formula for y[t], I can use Solve to determine the time required to reach the 
desired level of concentration of pollution

Solve0.04500000000000001` ⅇ-−0.38888888888888895` t

2.9999999999999996` + 1.` ⅇ0.38888888888888895` t ⩵ 0.0002, t

Solve::ifun:
Inversefunctionsare beingusedby Solve, so somesolutionsmaynotbe found; use Reduceforcompletesolutioninformation. *

{{t → 2.83646 + 8.07838 ⅈ}}

The answer is close the the text answer, which is 2.82 years. The imaginary, I believe, can 
be ignored.

36. Harvesting renewable resources. Fishing. Suppose that the population y[t] of a certain 
kind of fish is given by the logistic equation (11), p. 32, and fish are caught at a rate Hy 
proportional to y. Solve this so-called Schaefer model. Find the equilibrium solutions y1 and 
y2 (>0) when H < A. The expression y = Hy2 is called the equilibrium harvest or sustain-
able yield corresponding to H. Why?

37. Harvesting. In problem 36 find and graph the solution satisfying y(0) = 2 when (for 
simplicity) A = B = 1 and H = 0.2. What is the limit? What does it mean? What if there 
were no fishing?

16     1.5 Linear ODEs. Bernoulli Equation. Population Dynamics 27.nb



37. Harvesting. In problem 36 find and graph the solution satisfying y(0) = 2 when (for 
simplicity) A = B = 1 and H = 0.2. What is the limit? What does it mean? What if there 
were no fishing?

Numbered line (11) is
y'[t] = A y[t] -− B y[t]2

The text provides the solution to the equation as
y[t] = 1

c ⅇ-−A t+ B
A

But some disagreement with the text answer causes me to back up here and put down the 
ODE simply as
eqn = y'[t] ⩵ y[t] -− y[t]2

y′[t] ⩵ y[t] -− y[t]2

which is basic. Then adding in the initial value I call DSolve and get a solution
sol = DSolve[{eqn, y[0] ⩵ 2}, y, t]
Solve::ifun:

Inversefunctionsare beingusedby Solve, so somesolutionsmaynotbe found; use Reduceforcompletesolutioninformation. *

y → Function{t},
2 ⅇt

-−1 + 2 ⅇt


which I can test
eqn /∕. sol /∕/∕ Simplify

{True}

As for the solution which the text answer came up with,

PossibleZeroQ
2 ⅇt

-−1 + 2 ⅇt
-−

1

1.25 -− 0.75 ⅇ-−0.8 t


False

However, they both meet the requirement of the initial value
2 ⅇt

-−1 + 2 ⅇt
/∕. t → 0

2

1

1.25 -− 0.75 ⅇ-−0.8 t
/∕. t → 0

2.

But however I am sticking with mine. As it happens the two solutions are not that different, 
as the following plots show (and assigning 1 to each constant).
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In[33]:= p1 = Plot
2 ⅇt

-−1 + 2 ⅇt
,

1

1.25 -− 0.75 ⅇ-−0.8 t
,

{t, -−3, 3}, ImageSize → 250, AspectRatio → 0.7,
PlotStyle → Thickness[0.003], PlotLegends → "Expressions";

In[36]:= p2 = ListPlot[{{0, 2}}, PlotStyle → {Red, Large}, PlotMarkers → {□, 24}];

In[37]:= Show[p1, p2]

Out[37]=

□□
-−3 -−2 -−1 1 2 3

-−4

-−2

2

4

2ⅇt
-−1+2ⅇt

1
1.25-−0.75ⅇ-−0.8 t

Limit
2 ⅇt

-−1 + 2 ⅇt
, {t → ∞}

{1}

I am not really on topic here, since the text is talking about the logistics equation. Tossing 
out  a rough reference to that idea, I use material from Weisstein’s World, where r is the 
Malthusian parameter (rate of maximum population growth) .
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In[42]:= ShowGraphicsGridPartitionTable

PlotEvaluateTable
x0

x0 + ⅇ-−r t (1 -− x0)
, {x0, 0, 1, .05}, {t, 0, 10},

DisplayFunction → Identity,
PlotLabel → TraditionalForm[HoldForm[r] ⩵ PaddedForm[r, {2, 1}]],
AxesLabel → TraditionalForm /∕@ {t, x[t]},
PlotStyle → Hue /∕@ Range[0, 1, .05], PlotRange → All,

{r, -−1, 1.5, .5}, 3

, ImageSize → 500, GraphicsSpacing → {-−.07, .1}

Out[42]= 2 4 6 8 10
t

0.2
0.4
0.6
0.8
1.0
x(t)

r " -−1.0

2 4 6 8 10
t

0.2
0.4
0.6
0.8
1.0
x(t)

r " -−0.5

2 4 6 8 10
t

0.2
0.4
0.6
0.8
1.0
x(t)

r " 0.0

2 4 6 8 10
t

0.2
0.4
0.6
0.8
1.0
x(t)

r " 0.5

2 4 6 8 10
t

0.2
0.4
0.6
0.8
1.0
x(t)

r " 1.0

2 4 6 8 10
t

0.2
0.4
0.6
0.8
1.0
x(t)

r " 1.5

39. Extinction vs. unlimited growth. If in a population y(t) the death rate is proportional 
to the population, and the birth rate is proportional to the chance encounters of meeting 
mates for reproduction, what will the model be? Without solving, find out what will 
eventually happen to a small initial population. To a large one. Then solve the model.

All I’m going to do for this one is to show the interesting demonstration by Abby Brown on 
the Wolfram Demonstration Project. As noted above, r is the rate of maximum population 
growth, K is the carrying capacity. P0 is the starting population, and t is the elapsed time.

Manipulate

Module{pop, x, y, z},

Ifp0 ⩵ 0, pop[t_] := 0,

pop[t_] := KK  (((KK -− p0) /∕ p0) E^(-−k t) + 1)

;

Grid[{{
Show[

VectorPlot[{1, k y (1 -− y /∕ KK)}, {x, 0, 100},
{y, 0, 1500}, VectorStyle → {{Black, Arrowheads[0]}},
VectorPoints → {21, 31}, VectorScale → 0.04,

AspectRatio → 1, Frame → False, Axes → True,
, ,
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AspectRatio → 1, Frame → False, Axes → True,
AxesOrigin → {0, 0}, PlotRange → {{0, 100}, {0, 1500}},

Ticks → {Join[Table[{n, Style[n, 12, Black]}, {n, 0, 100, 10}],
Table[{n + 10, ""}, {n, -−5, 100, 5}]],

Join[Table[{n, Style[n, 12, Black]}, {n, 0, 1500, 100}],
Table[{n + 50, ""}, {n, 0, 1500, 100}]]},

AxesLabel → {Style["t", 14, Black],
Style["P", FontSize → 14, Black]}, ImageSize → 325],

Plot[pop[t], {t, 0, 100}, PlotStyle → Black],

Graphics[{
{Red, Line[{{t, 0}, {t, pop[t]}}]},
{Red, Line[{{0, pop[t]}, {t, pop[t]}}]}

}]
],

Column[{"",
Graphics[{

{Lighter[Red, 0.4], PointSize[0.025],
Point[ptlist[[1 ;; Round@pop[t]]]]},

{Black, Opacity[0.5], Text[Style[ToString[Round@pop[t]],
Which[0 < pop[t] < 1000,
150, pop[t] < 10 000, 100, pop[t] < 100000, 80,
pop[t] < 10000000, 62, pop[t] < 20000000, 55],

FontFamily → "Arial"], {0, 0}]}
}, PlotRange → 10, ImageSize → 275, PlotRangePadding → 0.3],

Style[Row[{" ", Checkbox[Dynamic[showexact]],
Row[{" exact ", Text@Style["P", Italic], " "}],
If[showexact, NumberForm[pop[t], {20, 5}]]}], "Label"]

}]}

}]
,

Row
Column[{

Control@{{p0, 100, Subscript[Style["P", Italic], 0]},
0, 500, 1, Appearance → "Labeled"},

Control@{{k, 0.08, Style["r", Italic]}, 0.03,
0.2, Appearance → "Labeled"},

Control@{{KK, 1000, Style["K", Italic]}, 10,
1500, Appearance → "Labeled"},

Control@{{t, 0, Style["t", Italic]}, 0, 100, 1,
AnimationRate → 2, Appearance → {"Labeled", "Open"}}

}],
Column
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StyleRowStyle"
dP

dt
", 24, Style[" = ", Plain], "r P(",

Style[1, Plain], "-−
P

K
)", 20, Italic, FontFamily → "Times",

StyleRowStyle["P(t)", 20], Style[" = ", Plain, 20],

"K"  Row[{"A", e^(Style["-−r t", 14]), Style[" + 1", Plain]}],

Style[" , A", 20], Style[" = ", Plain, 20], "
K -− P0
P0

",

24, Italic, FontFamily → "Times", "",
"Play the animation for consistent time steps."



,
{{showexact, False, "show exact P"}, {True, False}, None},
TrackedSymbols ⧴ {p0, k, KK, t },
Initialization ⧴ {ptlist = RandomReal[{-−10, 10}, {10000, 2}];}



P0 6

r 0.08

K 340.

t 19

19

dP
dt = r P(1-− P

K )

P(t) = K
Ae-−r t + 1 , A = K-− P0

P0
Playtheanimationforconsistenttimesteps.

10 20 30 40 50 60 70 80 90 100
t0

100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500

P

26
exact P
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Part::take: Cannottakepositions 1 through 26 in ptlist. *
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